

# High efficiency quantum dot solar cells based on multiple exciton generation

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Presenter: Alison Breeze

Organization: Solexant Corp. alison.breeze@solexant.com

Date: May 26, 2010

## Overview



## **Timeline**

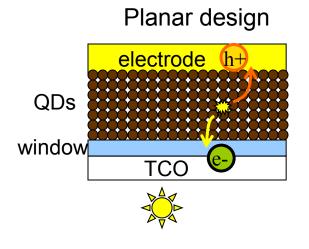
- Project start date: Feb. 2008
- Project end date: Jan. 2011
- Percent complete: 75%

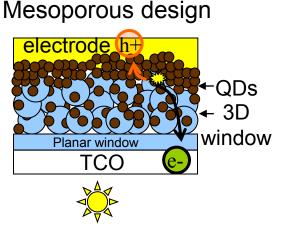
## **Budget**

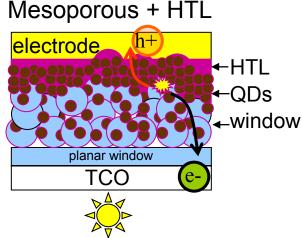
- Total project funding: \$1.1M
  - DOE share: \$0.9M
  - Contractor share: \$0.2M
- Funding received in FY09: \$0.3M
- Funding for FY10: \$0.3M

#### **Barriers**

- Barriers addressed
  - Device efficiency: demonstrate proof of concept to collect multiple exciton generated carriers


#### **Partners**


- U.C. Santa Cruz
  - Prof. Sue Carter
  - Prof. Glenn Alers
- Project lead: Alison Breeze


## Approach |



- Quantum dots: exchange long for short ligands for film formation and to improve charge transport
- Optimize charge generation and transport
  - Charge transfer: new ligands to tune charge transport
  - Recombination: improve passivation to eliminate traps
- Optimize energy level matching of QDs, window and electrode materials
- ALD hole transport layer (HTL) passivation and transport







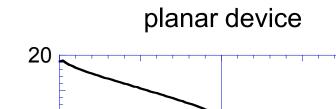
## Challenges, Barriers or Problems

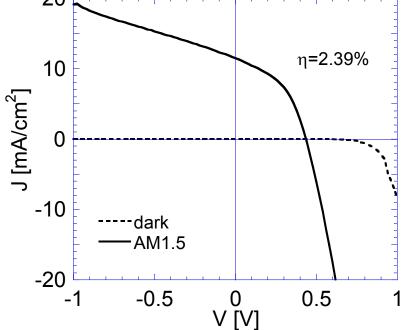


- Balancing trade-off between good charge transport against maintaining quantum confinement and MEG carrier generation
- successful integration of hole transport layer on top of QDs while maintaining quantum confinement properties

### Relevance



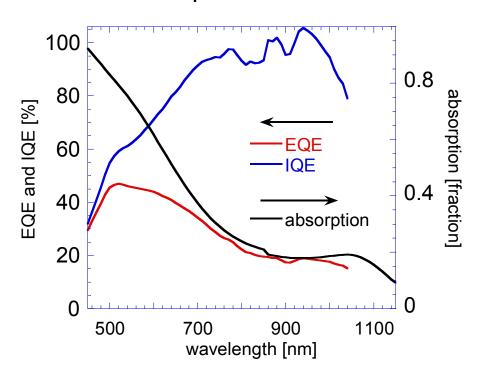

#### **Project Objectives:**


- Overall:
  - demonstrate that MEG in quantum dots can dramatically improve maximum efficiency obtainable in PV
  - Expand scientific field's understanding of quantum dot solar cell devices and factors limiting performance
- Year 2: milestone peak IQE=90% → achieved with peak IQE approaching 100%

Ability to harvest multiple exciton generated carriers will allow single junction solar cell efficiencies exceeding Shockley–Queisser limit of 31%

## **Device Performance**



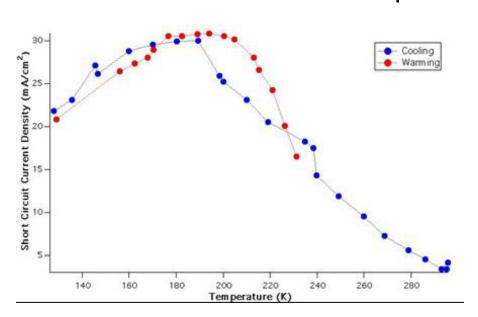


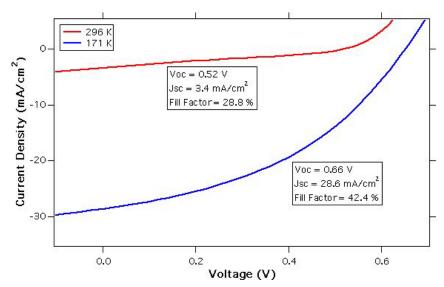



|        | V <sub>oc</sub> [V] | J <sub>sc</sub> [mA/cm <sup>2</sup> ] | ff [%] | η [%] |
|--------|---------------------|---------------------------------------|--------|-------|
| year 1 | 0.37                | 10.5                                  | 40     | 1.55  |
| year 2 | 0.44                | 11.9                                  | 46     | 2.39  |

Improvements: deposition and ligand exchange

#### mesoporous device





- IQE approaching 100% in near-IR
- Meets year 2 milestone
- IQE = EQE / absorption
- measurement error needs quantification

## Temperature Dependence



#### Mesoporous Device

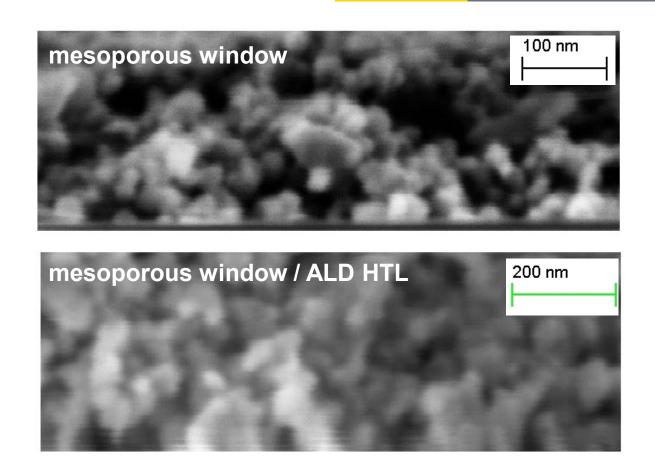




#### Mechanism theories:

- Increased particle coupling via decreased interparticle distance
- Increased carrier lifetime

Stunning performance improvement for lower temperatures η~8% under 100mW/cm² xenon light source at 171K


## Experiment summary and results



| experiment                                  | motivation                               | result                                                                 |  |
|---------------------------------------------|------------------------------------------|------------------------------------------------------------------------|--|
| shorter ligands                             | decrease QD spacing to improve transport | introduced counter-diode / charge suppresion feature, lower η          |  |
| secondary ligand passivation                | decrease recombination                   | slightly lowered collection efficiency                                 |  |
| core/shell QD passivation                   | decrease recombination                   | improved passivation but interfered w/ transport; J <sub>sc</sub> loss |  |
| vary window, electrode and QD energy levels | improve charge generation and collection | important factor requiring collective optimization                     |  |

## ALD of Hole Transport Layer





ALD HTL conformably coats mesoporous structure Integration into quantum dot solar cell architecture in progress

#### **Future Plans**



## Expand scientific understanding of QDSC functionality and nature of factors limiting device performance

- pinpoint efficiency increase mechanism for low temperature
- elucidate role of ligand on performance beyond interparticle spacing
- understand why short-ligand and additional passivation approaches had detrimental effects
- extensive material and device characterization

**Year 3 Milestone**: peak internal quantum efficiency IQE > 120%

Apply knowledge to engineer breakthrough performance at room temperature

## Collaborations



#### **U.C. Santa Cruz**

- Prof. Sue Carter and Prof. Glenn Alers research groups
- University laboratory and Advanced Studies Laboratory at NASA Ames Research Center
- relationship: sub-contractor within DOE Solar Program
- extensive collaboration

## Summary



- peak IQE approaching 100% in near-IR
- Temperature dependence demonstrates stunning efficiency increase to η~8% at low T
- Two avenues pursued to replicate performance at room temperature
  - increase particle coupling
  - improve surface defect passivation
- Expand material and device characterization

|     |      | peak IQE         | peak IQE milestone | <u>η under am1.5</u> |
|-----|------|------------------|--------------------|----------------------|
| yea | ar 1 | 79%              | > 60%              | 1.56%                |
| yea | ar 2 | approaching 100% | > 90%              | 2.39%                |